Abstract

Abstract: A novel type of concrete called geopolymer concrete is created by reacting sodium silicate containing minerals with sodium aluminate and a caustic activator, such as fly ash or slag from the production of iron and metal. It can serve as a viable replacement for regular portland cement. In addition to having outstanding mechanical qualities, geopolymer concrete also possesses a number of extremely high-end qualities, including corrosion and fire resistance. The majority of industrial solid waste and bottom ash from waste incineration are stacked up at random, which not only uses up land resources but also negatively affects the ecosystem. They can be recycled and utilised as raw materials to make geopolymer concrete. Geopolymer concrete has the ability to absorb pollutants like heavy metals and other radioactive chemicals, so that its stability, elasticity, and thermal qualities are unaffected. However, geopolymer concrete's use goes beyond that because of its superior qualities. The geopolymerization of concrete, the origin of the raw materials, the numerous categories of activators, the development processes, and the diverse applications of geopolymer concrete in various fields are all covered in this paper. In this section, the factors that affect the mechanical and abrasion resistance of geopolymer concrete. In order to establish a hypothesis that will be used to develop geopolymer concrete for future development, the disadvantages and application quantification of geopolymer concrete, as well as its mix design, will be summarised in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call