Abstract

Mechanical fault diagnosis is crucial for ensuring the normal operation of mechanical equipment. With the rapid development of deep learning technology, the methods based on big data-driven provide a new perspective for the fault diagnosis of machinery. However, mechanical equipment operates in the normal condition most of the time, resulting in the collected data being imbalanced, which affects the performance of mechanical fault diagnosis. As a new approach for generating data, generative adversarial network (GAN) can effectively address the issues of limited data and imbalanced data in practical engineering applications. This paper provides a comprehensive review of GAN for mechanical fault diagnosis. Firstly, the development of GAN-based mechanical fault diagnosis, the basic theory of GAN and various GAN variants (GANs) are briefly introduced. Subsequently, GANs are summarized and categorized from the perspective of labels and models, and the corresponding applications are outlined. Lastly, the limitations of current research, future challenges, future trends and selecting the GAN in the practical application are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call