Abstract

One of the major limitations of brain-computer interface (BCI) is its long calibration time. Typically, a big amount of training data needs to be collected at the beginning of each session in order to tune the parameters of the system for the target user due to between sessions/subjects non-stationarity. To mitigate this limitation, transfer learning can be potentially one useful solution. Transfer learning extracts information from different domains (raw data, features, or classification domain) to compensate the lack of labelled data from the test subject. Within this chapter transfer learning definitions and techniques are fully explained.After that, some of the available transfer learning applications in BCI are explored. Then, a brief discussion about applying transfer learning in the different domains is included. The discussion shows that despite some advances, a successful transfer learning framework for BCI still needs to be developed. Finally, future research directions in this topic are suggested in order to successfully and reliably reduce the calibration time for new subjects and increase the accuracy of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call