Abstract

This paper reviewed the recent research advances in the thermal management issues of Proton-Exchange-Membrane-Fuel-Cells (PEMFC) from design and control perspectives. Most of the current research on PEMFC thermal management have focused mainly on two main aspects; the cooling technology and stack cold start. However, PEM fuel cell thermal management involves many other issues such as effective heat-dissipation, temperature-distribution, temperature-control, and parasitic power, which are crucial in the process of thermal management research. The PEMFC temperature control has been weakly explored in the current review papers and thus, it has a potential research gap to be further studied in the area of PEMFC research. In addition, a review of the latest research in fuel cell technology is necessary due to its rapid development, especially with the increasing demand for fuel cell vehicles in recent years. In this paper, the PEMFC heat production, transfer and dissipation, and their related calculation equations are first reviewed. Then, the thermal management of PEMFC is reviewed from two perspectives: (i) the temperature-distribution characteristics inside the PEMFC and the influence of the structural parameters of each component on the heat dissipation and the uniformity of temperature distribution. (ii) The effects of different control strategies on stack temperature-control (Tst) with the evaluation of robustness of each controller. In addition, the coupling relationship between the fan and the pump in the cooling system and parasitic power studies are analyzed. Finally, according to the current research status of the PEMFC thermal management, the directions for further research are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.