Abstract
Contact lenses for ophthalmic drug delivery have become very popular, due to their unique advantages like extended wear and more than 50% bioavailability. To achieve controlled and sustained drug delivery from contact lenses, researchers are working on various systems like polymeric nanoparticles, microemulsion, micelle, liposomes, use of vitamin E, etc. Numerous scientists are working on different areas of therapeutic contact lenses to treat ocular diseases by implementing techniques like soaking method, molecular imprinting, entrapment of drug-laden colloidal nanoparticles, drug plate/film, ion ligand polymeric systems, supercritical fluid technology, etc. Though sustained drug delivery was achieved using contact lens, the critical properties such as water content, tensile strength (mechanical properties), ion permeability, transparency and oxygen permeability were altered, which limit the commercialization of therapeutic contact lenses. Also issues like drug stability during processing/fabrication (drug integrity test), zero order release kinetics (prevent burst release), drug release during monomer extraction step after fabrication (to remove un-reacted monomers), protein adherence, drug release during storage in packaging solution, shelf life study, cost-benefit analysis, etc. are still to be addressed. This review provides an expert opinion on different methodology to develop therapeutic contact lenses with special remark of their advantages and limitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.