Abstract

Though concrete is considered as the most widely used construction material, its limitations in terms of lower flexural and tensile strength, which may cause structural failure under tension and shear without a warning due to its brittle nature, directed research on enhancing its tensile and flexural characteristics further. Currently, various fibre types are used in the construction industry to mitigate said limitations of concrete and enhance characteristics including ductility, toughness, flexural and tensile strength. Steel fibre takes the higher fraction amongst commonly used fibre types in the present construction industry. Corrosion of steel fibre causes degradation of its ductility and performance with time. Carbon fibres’ higher tensile strength, low density and corrosive resistance properties make it a better alternative despite its higher cost. Currently, carbon fibre are mainly used in the construction industry for structural repair and rehabilitation works. Studies reveal that carbon fibre-reinforced concrete (CFRC) has a promising future, but the usage of carbon fibre in concrete as a reinforcement is currently limited and is still in the development stage. This paper provides an overview of carbon fibre and its characteristics, application and properties of CFRC. This review also addresses the state-of-the-art literature published on comprehensively analysing the variation of selected mechanical properties of CFRC with different fibre dosages compared with conventional concrete, particularly compressive strength, flexural strength and splitting tensile strength, workability, and including limitations of present literature for future research and development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.