Abstract

AbstractWe summarize the major recovery mechanisms of both steam-based recovery process and steam-chemical-based recovery process. Next, we review the previous lab-scale/field-scale studies examining the applications of surfactants, alkali, and novel chemicals in the steam-based oil recovery process. Among the different surfactants studied, alpha-olefin sulfonate (AOS) and linear toluene sulfonate are the recommended chemicals for their foam control/detergency effect. In particular, AOS was observed to perform especially well in residual oil saturation (ROS) reduction and sweep efficiency improvement when being co-injected with alkali. Application of organic alkali (alone or with a co-surfactant) has also drawn wide attention recently, but its efficacy in the field requires further investigation and the consumption of alkali by sands/clay is often an inevitable issue and, therefore, how to control the alkali loss requires further investigation. Novel chemical additives tested in the past five years include fatty acids (such as tail oil acid, TOA-Na+), biodiesel (o/w emulsion), along with other types of chemical additives including switchable hydrophilicity tertiary amines, chelating agents, deep eutectic solvents, graphite and SiO2 particles, ionic liquids, and urea. High thermal stability of some of the novel chemicals and their potential in increasing displacement efficiency and ROS reduction efficiency in the lab studies require further investigation for their optimized application in the field settings to minimize the use of steam while improving the recovery effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.