Abstract
The fourth industrial revolution will heavily rely on machine learning (ML). The rationale is that these strategies make various business operations in many sectors easier. ML modeling is the discovery of hidden patterns between multiple process parameters and accurately predicting the test values. ML has provided a wide range of applications in Chemical Engineering. One major application of ML can be found in the microwave-assisted pyrolysis (MAP) of lignocellulose bio-waste. MAP is an energy-efficient technology to obtain high-saturated hydrogen-rich liquid fuels. The main focus of this review study is understanding the utilization of various types of ML algorithms, including supervised and unsupervised techniques in microwave-assisted heating techniques for diverse biomass feedstocks, including waste materials like used tea powder, wood blocks, kraft lignin, and others. In addition to developing effective ML-based models, alternative traditional modeling approaches are also explored. In addition to various thermochemical conversion processes for biomass, MAP is also briefly reviewed with several case studies from the literature. The conventional modeling methodology for biomass pyrolysis with microwave heating is also discussed for comparison with ML-based modeling methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.