Abstract

SummaryThis paper summarizes the literature available on the behavior of concrete‐filled steel tubular (CFST) columns to evaluate the effect of geometrical properties such as shape of cross‐section, diameter‐to‐thickness ratio, and length‐to‐diameter ratio of CFST columns under axial loading. Then, the impact of different material composition for core concrete and encasing material is concluded for columns under axial loading. The performance of CFST is evaluated in terms of failure modes, ductility, stiffness, and axial compressive strength. For encasing tube, carbon steel, stainless steel, and aluminum are studied while for core, various concretes such as Normal (NSC) and high strength concrete (HSC), light weight concrete (LWC), recycled aggregate concrete (RAC), expansive concrete (EC), rubber crumb concrete(RuCC), and steel slag concrete (SSC) are covered for review in this paper. Material limitations as provided by various codes for design of composite structures is also mentioned for both tube and core concrete. Failure modes of concrete‐filled tubular(CFT) columns are most affected by geometric properties columns while materials used for concrete and encasing tube do not cause much difference. Though, ductility, axial compressive strength, and stiffness are affected by both geometric and material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.