Abstract
Tiny Machine Learning (TinyML) is an emerging technology proposed by the scientific community for developing autonomous and secure devices that can gather, process, and provide results without transferring data to external entities. The technology aims to democratize AI by making it available to more sectors and contribute to the digital revolution of intelligent devices. In this work, a classification of the most common optimization techniques for Neural Network compression is conducted. Additionally, a review of the development boards and TinyML software is presented. Furthermore, the work provides educational resources, a classification of the technology applications, and future directions and concludes with the challenges and considerations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.