Abstract

The compliant mechanism (CM)-based fast-tool servo (FTS) is used in ultraprecision machining contexts to produce high value products for technically advanced applications. Far too often, the FTS’ machined products are expected to be geometrically complex with minimal form tolerance and surface roughness. Since the FTS’ enclosing CM is responsible for guiding the cutting motion, its design is of utmost importance in determining the quality of the machined product. The objective of this paper is therefore to review specifically the design and structural related aspects of CM-based FTS that affects its ultraprecision machining performance. After a brief introduction, the fundamentals for designing ultraprecision capable CMs such as flexure hinge modelling, actuator selection and isolation and CM designing are comprehensively explained. In the subsequent section, the various configurations of CM-based FTSs that exist so far and their functionalities are listed. The critical factors which impact the CM-based FTS’ ultraprecision machining performance are identified and mitigating measures are provided wherever possible. Before concluding, the research questions that should be investigated for raising the state of the art of CM-based FTSs are presented as food for thought. With this review article, not only can practitioners have a clearer picture of how better to design their CMs for their FTSs, but they can also improve upon existing FTS designs from leading researchers so that products of higher quality than before can be made for the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call