Abstract
Replacing fossil fuels with renewable energy sources has a fundamental role in creating a sustainable and carbon-free economy. The catalytic hydrogenation of CO2 has great potential to reduce an enormous amount of CO2 and contribute to a green economy by converting CO2 into a variety of useful products. It is very important to develop new and highly efficient catalysts for the catalytic hydrogenation of CO2. Recently, the catalytic hydrogenation of CO2 has attracted an enormous amount of attention, which has been mainly focused on the development of efficient, selective, and stable catalysts. This review summarizes the current developments and improvements in the catalytic conversion of CO2 by H2 used toward the synthesis of CO, methanol, and hydrocarbons in terms of the catalyst performance, selectivity, and stability. The experimental procedures used for the three main pathways for the catalytic hydrogenation of CO2 (CO2 to CO via the reversible water gas shift reaction, CO2 to methanol synthesis, and CO2 to hydrocarbons via the Fischer–Tropsch reaction) using different catalysts are discussed. Furthermore, the industrial application of CO2 hydrogenation processes including their energy and economic analysis are also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.