Abstract
Speaker indexing or diarization is an important task in audio processing and retrieval. Speaker diarization is the process of labeling a speech signal with labels corresponding to the identity of speakers. This paper includes a comprehensive review on the evolution of the technology and different approaches in speaker indexing and tries to offer a fully detailed discussion on these approaches and their contributions. This paper reviews the most common features for speaker diarization in addition to the most important approaches for speech activity detection (SAD) in diarization frameworks. Two main tasks of speaker indexing are speaker segmentation and speaker clustering. This paper includes a separate review on the approaches proposed for these subtasks. However, speaker diarization systems which combine the two tasks in a unified framework are also introduced in this paper. Another discussion concerns the approaches for online speaker indexing which has fundamental differences with traditional offline approaches. Other parts of this paper include an introduction on the most common performance measures and evaluation datasets. To conclude this paper, a complete framework for speaker indexing is proposed, which is aimed to be domain independent and parameter free and applicable for both online and offline applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.