Abstract

Solid riveting is the most widely used joining technique in aircraft assembly, and the current key problems affecting practical application and reliable lifting are concentrated on static strength and fatigue. This paper aims to present a practical review on current practice and novel techniques of solid riveting for aircraft applications in order to obtain a thorough understanding of the underlying mechanisms of defect development to assist industrial users to find pragmatic solutions for safe life extension of components. At first, the current status of solid riveting processes is reviewed, and the key influencing factors on static/fatigue failure of riveted joints are identified. Effects of solid riveting design parameters, manufacturing parameters, residual stress, load transfer and secondary bending on static and fatigue strengths of riveted lap joints are discussed, followed by a review of the state-of-the-art solutions that deal with static/fatigue failures. Furthermore the new development in solid riveting techniques, including the use of different materials and riveting processes, is addressed. Finally, future research perspective and applications industrial riveting is presented.

Highlights

  • Aircraft is an extremely complex system consisting of a variety of structures with different materials, shapes and dimensions

  • Riveting technology in aviation has developed slowly compared to civil fields, such as automobile industry

  • In order to meet the requirements of materials, riveting technology needs to be improved, such as the introduction of composite materials and titanium alloys into aircraft industry, resulting in the great development of electromagnetic riveting technology and automatic riveting technology; Secondly, the urgent demand for riveting efficiency of aircraft structure, such as the emergence and application of low-voltage portable electromagnetic riveting machine; Thirdly, the introduction of new structures promotes the development of riveting technology, such as slug rivets

Read more

Summary

Introduction

Aircraft is an extremely complex system consisting of a variety of structures with different materials, shapes and dimensions. The structures relevant to a joining process include the nose, rear fuselage, empennage and the wings. These parts need to be assembled during the final stage of production. For individual component such as wing structure normally at large-scale and with complexshaped geometries, which are unable to be manufactured from a single sheet, that need to be joined together. Different segments need to be manufactured and joined at the first instance and further connected structurally at the final point. Riveting, bolted connections and adhesive bonding are the three dominantly used joining techniques in the current aircraft body structure [1,2].

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.