Abstract

Fungal disease is an invasive, serious, and systemic topical infection that affects the mucous membranes, tissues, and skin of humans. Oral medicines, on the other hand, have significant side effects, making topical treatments a viable alternative. Many antifungal medications applied through the skin in various conventional forms (gels or creams) may cause skin redness, erythema, stinging, and burning sensations. A promising approach to overcome the limitation of conventional form is the use of Nanocarriers for the treatment of skin infections since it allows targeted drug delivery, enhanced skin permeability, and controlled release and hence offers a lower risk of side effects. During the last few decades, lipid nanoparticles (LNPs) such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have gained a lot of attention. SLNs were designed to overcome the drawbacks of conventional colloidal carriers, such as emulsions, liposomes, and polymeric nanoparticles, by offering benefits such as a good release rate and drug targeting with high physical stability. NLCs are SLNs that have been modified (Second generation SLN) to improve stability and capacity loading. This review discusses the pathophysiology of the fungal diseases, the application of SLN and NLC, its method of preparation, Characterization, and an overview of clinical trials on SLN and NLC for the treatment of fungal infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call