Abstract

Hydrogen sulfide (H2S) is a critical problem for biogas applications, such as electricity and heat generation, or the production of different chemical compounds, due to corrosion and toxic effluent gases. The selective catalytic oxidation of H2S to S is the most promising way to eliminate H2S from biogas due to the lack of effluents, therefore can be considered a green technology. The most extensively used catalysts for H2S selective oxidation can be classified in two groups: metal oxide-based catalysts, including vanadium and iron oxides, and carbon-based catalysts. Numerous studies have been devoted to studying their different catalytic performances. For industrial applications, the most suitable catalysts should be less sensitive to the operating parameters like the temperature, O2/H2S ratio, and H2O content. More specifically, for metal oxides and carbon-based catalysts, the temperature and O2/H2S ratio have a similar effect on the conversion and selectivity, but carbon-based catalysts are less sensitive to water in all operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.