Abstract
Swarm intelligence algorithms are a subset of the artificial intelligence (AI) field, which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications. In the past decades, numerous swarm intelligence algorithms have been developed, including ant colony optimization (ACO), particle swarm optimization (PSO), artificial fish swarm (AFS), bacterial foraging optimization (BFO), and artificial bee colony (ABC). This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures. It provides an overview of the various swarm intelligence algorithms and their advanced developments, and briefly provides the description of their successful applications in optimization problems of engineering fields. Finally, opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.