Abstract
Modern lifestyle and alleviated anthropogenic activities have increased the pollutant load, ultimately causing stress on the environment. In industrialization, many harmful compounds are released into the environment polluting air, water, and soil, triggering adverse impacts on the ecosystem and human beings. Therefore, the development of advanced remediation technologies turns out as a significant environmental priority. Less polar cyclic oligosaccharide Cyclodextrin (CD) with cavity binding organic compounds attracted attention by helping effectively as environmental application. The formation of inclusion complexes and modified Cyclodextrin by cross-linking or surface modification enhances their capacity to abate pollutant effectively from the environment. Modification results in the formation of several novel materials such as CD-based composites, nanocomposites, crosslinked polymer or hydrogels, potent cross-linkers, CD-based membranes, and CD immobilized supports. Several environmental remediation technologies based on Cyclodextrin and modified Cyclodextrin have been discussed in detail in this review. Various environmental applications of Cyclodextrin and its derivatives have been discussed, along with their formation, properties, and characterization. Effective removal of organic pollutants, inorganic pollutants, micropollutants, volatile compounds etc., has been explained using several remediation technologies. Based on CD innocuity, this is referred to as the green process. The reversible equilibrium corresponded by the inclusion phenomenon sets a significant trend in the field of CD environmental application to develop techniques by incorporating supramolecular chemistry as well as irreversible methods such as biodegradation and advanced oxidation. It helps in the complete removal of pollutants and ultimately recycling the CD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.