Abstract
Road safety and accident prevention are critical concerns in modern transportation. This paper presents a comprehensive survey of driver safety systems, focusing on the latest advancements in this field. We analyze the existing literature to identify key research trends in driver safety systems, encompassing various categories of solutions. Our survey delves into the reasons behind road accidents and assesses the effectiveness of emerging technologies and solutions in accident prevention. By categorizing and evaluating these solutions based on the Internet of Things and Machine Learning, we provide valuable insights into the landscape of road accident detection and prevention systems. This survey not only highlights the current state of the art but also serves as a reference for future research and innovation in the domain of driver safety. Abbreviations IoT: Internet of things; CNN: Convolutional Neural Network; SVM: Support vector machine; HRV: Heart rate variability; RRI: R-R Interval; MSPC: Multivariate Statistical process control; EAR: Eye aspect ratio; HUD: Head-up display; GPS: Global positioning system; CAN: Controller area network; GPU: Graphics processing unit; IR: Infrared; GSM: Global system for mobile communication; EEG: Electroencephalogram; PCA: Principal component analysis; SVC: Support vector classifier; SdsAEs: Stacked denoising sparse autoencoders; ECG: Electrocardiogram; LED: Light emitting diode; NFC: Near field communication; PSO: Personal security officer; PPG: Photoplethysmography; EDA: Electrodermal activity; EMG: Electromyography; LCD: Liquid crystal display; RF SoCs: Radiofrequency system on chip; PLR: Piecewise linear representation; BAC: Blood alcohol content; BPNN: Backpropagation Neural Network; ADSD: Automated driver sleepiness detection; EOG: Electroocoulogram; KNN: K nearest neighbor; CBR: Case-based reasoning; RF: Random forest; NIR: Near-infrared; LBP: Local binary pattern; PERCLOS: Percentage of Eye Closure; SVD: Singular value decomposition; FFT: Fast Fourier transform; LSTM: Long short-term memory; DDD: Drunk driver detection; BLE: Bluetooth low energy; SWM: Steering wheel movements; M-SVM: Mobile-based Support Vector Machine; AI: Artificial intelligence; ML: Machine learning; DL: Deep learning; PCA: Principal component analysis; IPCA: Incremental principal component analysis; ANN: Artificial neural network; CAV: Connected and automated vehicles
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computers and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.