Abstract

Due to their interesting electrocatalytic properties for the oxygen reduction reaction (ORR), hollow Pt-alloy nanoparticles (NPs) supported on high-surface-area carbon attract growing interest. However, the suitable synthesis methods and associated mechanisms of formation, the reasons for their enhanced specific activity for the ORR, and the nature of adequate alloying elements and carbon supports for this type of nanocatalysts remain open questions. This Review aims at shedding light on these topics with a special emphasis on hollow PtNi NPs supported onto Vulcan C (PtNi/C). We first show how hollow Pt-alloy/C NPs can be synthesized by a mechanism involving galvanic replacement and the nanoscale Kirkendall effect. Nickel, cobalt, copper, zinc, and iron (Ni, Co, Cu, Zn, and Fe, respectively) were tested for the formation of Pt-alloy/C hollow nanostructures. Our results indicate that metals with standard potential -0.4<E<0.4 V (vs. the normal hydrogen electrode) and propensity to spontaneously form metal borides in the presence of sodium borohydride are adequate sacrificial templates. As they lead to smaller hollow Pt-alloy/C NPs, mesoporous carbon supports are also best suited for this type of synthesis. A comparison of the electrocatalytic activity towards the ORR or the electrooxidation of a COads monolayer, methanol or ethanol of hollow and solid Pt-alloy/C NPs underlines the pivotal role of the structural disorder of the metal lattice, and is supported by ab initio calculations. As evidenced by accelerated stress tests simulating proton-exchange membrane fuel cell cathode operating conditions, the beneficial effect of structural disorder is maintained on the long term, thereby bringing promises for the synthesis of highly active and robust ORR electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.