Abstract
A3 coupling is one of the few transition-metal catalyzed carbon-carbon bond forming reactions that have been established as a most direct, efficient and atom-economical synthetic approach to afford propargylamine derivatives using various catalysts. A large number of nanosized heterogeneous catalysts for three-component coupling reactions between an aldehyde, an amine, and a terminal alkyne have been popularly introduced as an A3 coupling in the last decade. The coupling product has found a broad application as a key intermediate for a variety of heterocyclic useful compounds and numerous biologically active molecules such as β-lactams, conformationally restricted peptides, isosteres, herbicides, fungicides, indolizines, pyrroles, quinolines and therapeutic drug molecules. This review aims to give an overview of the current progress made towards the preparation and application of various nanocatalysts-catalyzed A3 coupling transformations for the synthesis of propargylamines from 2007 to 2017. Several nanocatalysts based on metal and metal oxide nanoparticles (NPs) such as copper, gold, silver, iron, nickel, cobalt and zinc have successfully been employed in A3 coupling reactions. Besides, core-shells NPs, polymers, complexes, graphenes, metal-organic frameworks and ionic liquids have also been used in these reactions. Abundant examples have been given in this area. Different aspects of the reactions, disparate methods of preparation of nanocatalysts, characterization and their reusability have been perused.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.