Abstract
AbstractThis comprehensive review explores the remarkable progress and prospects of diatomaceous earth (DE) as a bio-template material for synthesizing electrode materials tailored explicitly for supercapacitor and battery applications. The unique structures within DE, including its mesoporous nature and high surface area, have positioned it as a pivotal material in energy storage. The mesoporous framework of DE, often defined by pores with diameters between 2 and 50 nm, provides a substantial surface area, a fundamental element for charge storage, and transfer in electrochemical energy conversion and storage. Its bio-templating capabilities have ushered in the creation of highly efficient electrode materials. Moreover, the role of DE in enhancing ion accessibility has made it an excellent choice for high-power applications. As we gaze toward the future, the prospects of DE as a bio-template material for supercapacitor and battery electrode material appear exceptionally promising. Customized material synthesis, scalability challenges, multidisciplinary collaborations, and sustainable initiatives are emerging as key areas of interest. The natural abundance and eco-friendly attributes of DE align with the growing emphasis on sustainability in energy solutions, and its contribution to electrode material synthesis for supercapacitors and batteries presents an exciting avenue to evolve energy storage technologies. Its intricate structures and bio-templating capabilities offer a compelling path for advancing sustainable, high-performance energy storage solutions, marking a significant step toward a greener and more efficient future. Graphical Abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.