Abstract
AbstractHeavy metal pollution of water is a global concern, which adversely affects human health because of its resistance to biodegradation and thus its transmission in the food chain via bioaccumulation. Nano zerovalent iron (nZVI) is very effective for the removal of heavy metals and is cost effective in terms of production. However, the main problems of nZVI are agglomeration and ease of oxidation. Several stabilization materials have been implemented to limit the aggregation of nZVI, such as silica, activated carbon and biochar. In comparison, as a support material, biochar possesses a large surface area, high stability and strong adsorption capacity, as well as being obtainable from various types of materials. Thus, this work aims to establish the opportunities available on the use of biochar‐supported nZVI in utilizing its ability to stabilize and immobilize the nZVI. This review also reports the preparation, modification and surface enhancement of biochar, nZVI and biochar‐nZVI for practical use as adsorbents. This review shows that modifications of the nZVI surface can help in their stabilization and reduction of aggregation. Additionally, this review is able to increase one's understanding of heavy metal sorption behavior by biochar‐supported nZVI as it is the important as heavy metal sorption is driven based on biochar‐nZVI type and heavy metal species which involve numerous mechanisms, including physical binding, complexation, ion exchange, surface precipitation and electrostatic interactions. Furthermore, this research reviews the adsorption parameters, including the crucial adsorption mechanism of heavy metals onto biochar‐nZVI; the reusability of the biochar‐nZVI is also discussed in this work. © 2022 Society of Chemical Industry (SCI).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Technology & Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.