Abstract

Bone fractures are significant health concerns, particularly for the elderly population with osteoporosis. Prediction of the risk of fracture and its prevention can help in reducing the socioeconomic burden of osteoporotic fractures. The risk of bone fractures has been investigated at various length scales using analytical methods, computational models and physical experiments. Over the last few decades, significant developments have been reported on linear elastic fracture mechanics (LEFM) applications in predicting crack initiation and propagation. The objective of this study was to review the state-of-the-art of LEFM in the prediction of bone fractures. A brief overview of the LEFM was presented. Bone structural aspects associated with bone fractures were summarized along with the bone toughening mechanisms. Critical reviews of the literature on the use of LEFM-based modeling techniques for predicting bone fractures at various length scales were presented. The critical modeling parameters, challenges and limitations of using LEFM in simulating bone fractures were identified, showing future research directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call