Abstract
Remaining useful life (RUL) prediction, known as ‘prognostics’, has long been recognized as one of the key technologies in prognostics and health management (PHM) to maintain the safety and reliability of the system, and reduce the operating and management costs. Particularly, thanks to great advances in sensing and condition monitoring techniques, data-driven RUL prediction has attracted much attention and various data-driven RUL prediction methods have been reported. Despite the extensive studies on data-driven RUL prediction methods, the successful applications of such methods depend heavily on the volume and quality of the data, and purely data-driven methods possibly generate physically infeasible/inconsistent RUL prediction results and have the limited generalizability and interpretability. It is noted that there is an increasing consensus that embedding the physics or the domain knowledge into the data-driven methods and developing physics-informed data-driven methods will hold promise to improve the interpretability and efficiency of the RUL prediction results and lower the requirement of the volume and quality of the data. In this context, physics-informed data-driven RUL prediction has become an emerging topic in the prognostics field. However, there has not been a systematic review particularly focused on this emerging topic. To fill this gap, this paper reviews recent developments of physics-informed data-driven RUL prediction methods. In this review, current methods fallen into this type are broadly divided into three categories, i.e. physical model and data fusion methods, stochastic degradation model based methods, and physics-informed machine learning (PIML) based methods. Particularly, this review is centered on the PIML based methods since the fast development of such methods have been witnessed in the past five years. Through discussing the pros and cons of existing methods, we provide discussions on challenges and possible opportunities to steer the future development of physics-informed data-driven RUL prediction methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.