Abstract
Photo-mediated ultrasound therapy (PUT) is a novel therapeutic technique based on the combination of ultrasound and laser. The underlying mechanism of PUT is the enhanced cavitation effect inside blood vessels. The enhanced cavitation activity can result in bio-effects such as reduced perfusion in microvessels. The reduced perfusion effect in microvessels in the eye has the potential to control the progression of eye diseases such as diabetic retinopathy and age-related macular degeneration. Several in vivo studies have demonstrated the feasibility of PUT in removing microvasculature in the eye using rabbit eye model and vasculature in the skin using rabbit ear model. Numerical studies using a bubble dynamics model found that cavitation is enhanced during PUT due to the dramatic increase in size of air/vapor nuclei in blood. In addition, the study conducted to model cavitation dynamics inside a blood vessel during PUT found stresses induced on the vessel wall during PUT are higher than that at normal physiological levels, which may be responsible for bio-effects. The concentration of vasodilators such as nitric oxide and prostacyclin were also found to be affected during PUT in an in vitro study, which may limit blood perfusion in vessels. The main advantage of PUT over conventional techniques is non-invasive, precise, and selective removal of microvessels with high efficiency at relatively low energy levels of ultrasound and laser, without affecting the nearby structures. However, the main limitation of vessel rupture/hemorrhage needs to be overcome through the development of real-time monitoring of treatment effects during PUT. In addition to the application in removing microvessels, PUT-based techniques were also explored in treating other diseases. Studies have found a combination of ultrasound and laser to be effective in removing blood clots inside veins, which has the potential to treat deep-vein thrombosis. The disruption of atherosclerotic plaque using combined ultrasound and laser was also tested, and the feasibility was demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.