Abstract

Automatic human motion tracking in video sequences is one of the most frequently tackled tasks in computer vision community. The goal of human motion capture is to estimate the joints angles of human body at any time. However, this is one of the most challenging problem in computer vision and pattern recognition due to the high-dimensional search space, self-occlusion, and high variability in human appearance. Several approaches have been proposed in the literature using different techniques. However, conventional approaches such as stochastic particle filtering have shortcomings in computational cost, slowness of convergence, suffers from the curse of dimensionality and demand a high number of evaluations to achieve accurate results. Particle swarm optimization (PSO) is a population-based globalized search algorithm which has been successfully applied to address human motion tracking problem and produced better results in high-dimensional search space. This paper presents a systematic literature survey on the PSO algorithm and its variants to human motion tracking. An attempt is made to provide a guide for the researchers working in the field of PSO based human motion tracking from video sequences. Additionally, the paper also presents the performance of various model evaluation search strategies within PSO tracking framework for 3D pose tracking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.