Abstract

The advancement of autonomous mobile robots (AMR) is vastly being discovered and applied to several industries. AMR contributes to the development of artificial intelligence (AI), which focuses on the growth of human-interaction systems. However, it is safe to understand that mobile robots work closely in real-time and under changing surroundings. Similarly, some limitations may affect the efficiency of mobile robots. Thus, to improve the system's efficiency and accuracy, mobile robots should adopt the ability to detect incoming obstacles accurately. This paper presents the findings of a brief technology review aimed at identifying the current state of the art and future needs for AMR in object detection. This review paper is presented in the form of a narrative-literature review. Review articles were collected from 2015 until 2022 from journals or conference papers from well-known sources like IEEE Xplore, Science Direct, Scopus, and Web of Science (WOS). The analysis of the articles was discussed in four main topics, AI, object detection, AMR, and deep learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.