Abstract

Since the traditional binary logic has several disadvantages including inaccuracy, high complexity, and limited applications. Multiple-Valued Logic (MVL), which can store more information in one digit than binary logics, require less number of logic gates and take the third value in practical logic problems, is developed and introduced. More information stored per digit leads to higher computational efficiency. Less logic gates results in more spaces on the circuit board. Considering the third value means higher accuracy. In this research, some examples of different MVL circuit are designed to give a rough picture of current research in this domain. These designs are based on ternary and quaternary logics rather than binary logics. Besides, reliability evaluation through mathematical approach is presented in order to prove that the new design is more preferable. This can be carried out with mathematical analysis such as calculating a matrix that reflects its reliability, and simulating different designs to obtain certain values and comparing them with each other. Despite facing various challenges, including complicated physical implementation and difficulty to modulate the signals. This means that there is still potential of further research in this domain of logic circuits. This result in the conclusion that the MVL logic circuits will replace the conventional binary logic circuits in the future, and probably that decimal logic would be developed and no binary-to-decimal conversion unit will be required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call