Abstract

Abstract Phase Change Materials (PCM) have been widely used in different applications. PCM is recognized as one of the most promising materials to store solar thermal energy in the form of latent heat. Utilization of PCMs for solar energy storage compensates for the intermittent characteristic of this energy source. Mathematical modeling and numerical simulation of solar energy storage systems provide useful information for researchers to design and perform experiments with a considerable saving in time and investment. This paper is focused on modeling and simulation of PCM based systems that are used in different solar energy storage applications. A thorough literature review is performed to investigate and compare the results and accuracy of different mathematical models, numerical methods and thermodynamic analysis of using different PCMs in different solar systems. Moreover, the potential research areas in numerical simulations and thermodynamic analysis of solar systems based on PCMs are determined considering the existing gaps in the literature. Although the main idea of using PCMs is storing thermal energy for different applications, PCMs can be used for other purposes such as cooling photovoltaic panels. Past studies have shown that utilization of PCMs in photovoltaic panels can improve the performance of panels by decreasing the average panel temperature by 9.7%. The results of simulations also showed that for each climate a specific PCM with a melting temperature should be used to reach the most uniform temperature distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call