Abstract

Semiconductor-based photoelectrocatalytic processes have attracted considerable research interest for solar energy collection and storage. Photoelectrocatalysis is a heterogeneous photocatalytic process in which a bias potential is applied to a photoelectrode, and thus the photoelectrocatalytic performance is closely related to the photoelectrode prepared by semiconductors. Among various semiconductors, metal-organic frameworks (MOFs) have attracted more and more attention because of their unique properties such as optical properties and adjustable structure. Herein, a comprehensive review on different MOFs (Ti-based, Zn-based, Co-based, Fe-based, Cu-based, and mixed metal-based MOFs) for heterogeneous photoelectrocatalysis is carried out and, in particular, the application of this technique for CO2 conversion and water splitting is discussed. In addition, the challenges and development prospects of MOFs in photoelectrocatalysis are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call