Abstract

Since the last few decades, cadmium anthropocentric sources have been increased drastically. Various chemical and physical approaches for cadmium remediation have been proposed, but these techniques are quite expensive, not healthy for the environment and not efficient at the low concentration of cadmium. Thus, in the last few years, the cadmium removal by biological approaches has received a great interest. Many bacteria can resist against high concentration of cadmium through different mechanisms. The cadmium-resistant bacteria can be grouped into three levels. The main group consists of bacteria which efflux the cadmium from the cells. The bacteria of the other two groups are capable of detoxifying or binding cadmium. The cadA and cadB gene systems are involved in efflux mechanism, and these encode different efflux pump proteins, while the functional groups such as amine, carboxyl, phosphate and hydroxyl facilitate cadmium binding to bacterial surface such as chemisorption. Many enzymes are involved in the detoxifying the cadmium and make the membrane impermeable against cadmium. This paper also reviews the industrial application of cadmium-resistant bacteria and the future perspectives of genetic engineering, bioelectrochemical system, microbial aggregates and biosorption of cadmium by algae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call