Abstract
This paper provides a review on machine learning methods applied to the asset management discipline. Firstly, we describe the theoretical background of both machine learning and finance that will be needed to understand the reviewed methods. Next, the main datasets and sources of data are exposed to help researchers decide which are the best ones to suit their targets. After that, the existing methods are reviewed, highlighting their contribution and significance in the analyzed financial disciplines. Furthermore, we also describe the most common performance criteria that are applied to compare such methods quantitatively. Finally, we carry out a critical analysis to discuss the current state-of-the-art and lay down a set of future research directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.