Abstract
Machine learning is important because it gives us accurate predictions based on data. It can teach computers to perform complex tasks without any human intervention. Machine learning can analyze complex blocks of data. Machine learning enables entrepreneurs and businesses to quickly recognize potential business opportunities and risks. Businesses that rely solely on large amounts of data are using machine learning as the best way to analyze data and build models. Machine learning is not only considered as the backbone of artificial intelligence, but machine learning also plays a significant role in the development and advancement of artificial intelligence. Using algorithms to solve classification problems with different sets of parameters yields dramatically different classification accuracies. The machine learning challenge of finding the most appropriate parameter values for algorithms that best solve technical problems related to performance metrics. In this paper, the author discussed various types of machine learning such as supervised, unsupervised and reinforcement machine learning. The main emphasis is on supervised machine learning such as classification and regression using various machine learning algorithms such as Decision Tree, Naïve Bayes, K-Nearest Neighbor, Random Forest and SVM Classifier. The author explains all classification-based algorithms well with examples and diagrams. The authors also mention applications or domain areas where these classification algorithms can be used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Soft Computing and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.