Abstract

Steep increases in air temperatures and CO2 emissions have been associated with the global demand for energy. This is coupled with population growth and improved living standards that encourages the reliance on mechanical acclimatization. Lighting energy alone is responsible for a large portion of total energy consumption in office buildings; and the demand for artificial light is expected to grow in the next years. One of sustainable approaches to enhance energy-efficiency is to incorporate daylighting strategies, which entail the controlled use of daylight inside buildings. Daylight simulation is an active area of research that offers accurate estimations, yet requires a complex set of inputs. Even with today’s computers, simulations are computationally expensive and time-consuming, hindering to acquire accelerated preliminary approximations in acceptable timeframes, especially for the iterative design alternatives. Alternatively, predictive models that build on machine learning algorithms have granted much interest from the building design community due to their ability to handle such complex non-linear problems, acting as proxies to heavy simulations. This research presents a review on the growing directions that exploit machine learning to rapidly predict daylighting performance inside buildings, putting a particular focus on scopes of prediction, used algorithms, data sources and sizes, besides evaluation metrics. This work should improve architects’ decision-making and increase the applicability to predict daylighting. Another implication is to point towards knowledge gaps and missing opportunities in the related research domain, revealing future trends that allow for such innovative approaches to be exploited more commonly in Architectural practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.