Abstract

Honey is produced exclusively by honeybees and stingless bees which both are well adapted to tropical and subtropical regions such as Malaysia. Stingless bees are known for producing small amounts of honey and are known for having a unique flavor profile. Problem identified that many stingless bees collapsed due to weather, temperature and environment. It is critical to understand the relationship between the production of stingless bee honey and environmental conditions to improve honey production. Thus, this paper presents a review on stingless bee's honey production and prediction modeling. About 54 previous research has been analyzed and compared in identifying the research gaps. A framework on modeling the prediction of stingless bee honey is derived. The result presents the comparison and analysis on the internet of things (IoT) monitoring systems, honey production estimation, convolution neural networks (CNNs), and automatic identification methods on bee species. It is identified based on image detection method the top best three efficiency presents CNN is at 98.67%, densely connected convolutional networks with YOLO v3 is 97.7%, and DenseNet201 convolutional networks 99.81%. This study is significant to assist the researcher in developing a model for predicting stingless honey produced by bee's output, which is important for a stable economy and food security.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.