Abstract

Power batteries are treated as heart of the electrical vehicles and they release huge amount of heat throughout both charging and discharging processes. Hence Battery Thermal Management System (BTMS) is designed in order to control maximum temperature rise within a battery pack and to maintain even temperature distribution among the cells for increasing life span, efficiency and safety of the batteries. With an enticing characteristic feature such as low parasitic power, low weight, uniform temperature distribution among cells, passive thermal management system namely Phase Change Material (PCM) is justified as an efficient BTMS in recent years. The current work begins with the introduction of Hybrid Thermal Management System combined with PCM for enhancing cooling performance of BTMS. In addition to that, some of the thermal conductivity enrichment techniques for PCM (i.e. the usage of thermal conductive particles, cellular foams, encapsulation) are summarized. Research studies which involves various key parameters such as cell spacing, mass of PCM, thickness of PCM, specific heat capacity and thermal conductivity influencing the performance of systems are reviewed. Eventually, the results of several studies on PCM cooling are proposed in the conclusion part based on analysis of previous works.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call