Abstract

In the attempt to process lower-grade ores, mineral flotation has taken centre stage as the preferred recovery route. However, in many instances, the froth product does not have a high grade due to the entrainment of gangue minerals. Industry has solved this challenge by introducing froth washing mechanisms. Clean wash water is introduced into or on top of the froth to reduce the amount of entrained gangue in the final concentrate. This article reviews froth-washing systems in detail and highlights the advantages and disadvantages of each wash-water delivery mechanism. Comments on industrial uptake are provided. The indications are that froth washing improves the grade of the concentrate and influences froth stability and mobility. Other researchers have reported an improvement in recovery—especially of coarse particles—with wash water being added, while others have reported a reduction in recovery, especially with composite particles. Froth washing is generally applied in mechanical flotation cells by washing at the lip. In column flotation cells and Jameson cells, wash water is added to the entire froth surface. The literature also indicates that the wash-water rate, wash-water quality, type of wash-water delivery/ distribution mechanism and the area covered by wash water are critical parameters that dictate the efficacy of the washing system. Further research is necessary on the impact of wash-water quality on the froth phase sub-processes including froth rheology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call