Abstract
Injuries due to unintentional falls cause high social cost in which several systems have been developed to reduce them. Recently, two trends can be recognized. Firstly, the market is dominated by fall detection systems, which activate an alarm after a fall occurrence, but the focus is moving towards predicting and preventing a fall, as it is the most promising approach to avoid a fall injury. Secondly, personal devices, such as smartphones, are being exploited for implementing fall systems, because they are commonly carried by the user most of the day. This paper reviews various fall prediction and prevention systems, with a particular interest to the ones that can rely on the sensors embedded in a smartphone, i.e., accelerometer and gyroscope. Kinematic features obtained from the data collected from accelerometer and gyroscope have been evaluated in combination with different machine learning algorithms. An experimental analysis compares the evaluated approaches by evaluating their accuracy and ability to predict and prevent a fall. Results show that tilt features in combination with a decision tree algorithm present the best performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.