Abstract

This paper presents a literature review on pattern recognition of electromyography (EMG) signals and its applications. The EMG technology is introduced and the most relevant aspects for the design of an EMG-based system are highlighted, including signal acquisition and filtering. EMG-based systems have been used with relative success to control upper- and lower-limb prostheses, electronic devices and machines, and for monitoring human behavior. Nevertheless, the existing systems are still inadequate and are often abandoned by their users, prompting for further research. Besides controlling prostheses, EMG technology is also beneficial for the development of machine learning-based devices that can capture the intention of able-bodied users by detecting their gestures, opening the way for new human-machine interaction (HMI) modalities. This paper also reviews the current feature extraction techniques, including signal processing and data dimensionality reduction. Novel classification methods and approaches for detecting non-trained gestures are discussed. Finally, current applications are reviewed, through the comparison of different EMG systems and discussion of their advantages and drawbacks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.