Abstract

Electrical discharge machining (EDM) is widely applied for machining difficult-to-cut materials in mold and die industries. However, the major limitations associated with the EDM are low productivity and poor surface integrity of the machined surfaces. In recent years, several developments have been applied to overcome such limitations of EDM. Electrical discharge grinding (EDG) is a hybrid machining process that simultaneously involves the spark erosion action of EDM and the mechanical abrasion action of the grinding wheel for the material removal purpose. The rotating motion of the grinding wheel also contributes to the easy removal of debris particles, thereby improving the material removal. It is evident from the literature that the rotating motion of the grinding wheel enhances the flushing mechanism resulting in better performance of the process. This paper aims to present a comprehensive review of the research carried out in EDG, highlighting the result of the experimental, modeling, and optimization techniques applied in this area. Initially, the background of EDM and the need for hybrid EDM processes have been presented. Then, a few hybrid EDM processes have been discussed, addressing their advantages and limitations. Further, the concept of EDG and electrical discharge diamond grinding (EDDG) has been discussed, along with the classification of the EDDG process. Finally, this paper explores the current research status and future research perspective in the area of EDG and EDDG processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call