Abstract
Starting from the principle of instantaneous power theory, this article explores various direct power control (DPC) strategies for three-phase two-level pulsewidth modulation (PWM) converters. After summarizing the fundamental power formula of PWM rectifiers, this article studies the operating principle of the conventional table-based approach and its related improvements. It further looks into the advanced counterparts employing space vector modulation and different nonlinear control strategies. The emphasis is put on the prevailing predictive DPC. Besides, the voltage-sensorless and robust DPC methods based on the virtual flux concept and the state observer or estimator are investigated. Critical issues, including the sample delay, constant switching frequency, duty cycle optimization, objective function, and unbalanced operation are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.