Abstract

Hydrokinetic energy conversion devices provide the facility to capture energy from water flow without the need of large dams, impoundments, channels or deviation of the water as in conventional hydroelectric centrals. Hydrokinetic systems are intended to be used in streams, either natural (rivers, estuaries, marine currents) or artificially built channels. This article reviews the advances made over the last 10–15 years regarding the three-dimensional computational fluid dynamics modeling and simulation of this type of turbines. Technical aspects of model design, employed boundary conditions, solution of the governing equations of the water flow through the hydrokinetic turbine and assumptions made during the simulations are thoroughly described. We hope that this review will encourage new computational investigations about hydrokinetic turbines that contribute to their continuous improvement, development and implementation aimed to sustainable use of water resources and addressed to solve the problem of lack of electricity supply in small, isolated populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.