Abstract

This paper reviews the recent advances in multi-scale computational fluid dynamics (CFD) simulations of biomass pyrolysis in fluidized bed reactors. The interconnection among molecular-scale, particle-scale, CFD cell-scale, and reactor-scale are first introduced, together with the Eulerian-Lagrangian (E-L) and Eulerian multi-fluid model (MFM) frameworks. Then an overview of the theoretical basis and practical applications of four main particle-scale models, i.e, uniform conversion model, progressive conversion model, interface-based model, and corrected uniform conversion model, are highlighted. The coupling of particle-scale models with CFD cell-scale models is discussed, as well as with molecular-scale models. Finally, the perspective of future work to develop reliable and efficient CFD models for simulating biomass pyrolysis in fluidized bed reactors is outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.