Abstract
The biomedical application of high-voltage nanosecond pulsed electric fields (nsPEFs) has become an emerging interdisciplinary research field in recent years. Compared with microsecond and millisecond pulsed electric fields, high-voltage nsPEFs can not only lead the cell membrane structure to polarize and dielectric break down the cell membrane structure, i.e. membrane electroporation, but also penetrate into the cell, triggering off organelle bioelectrical effects such as cytoskeleton depolymerization, intracellular calcium ion release, and mitochondrial membrane potential dissipation. Extensive attention has been attracted from related academic communities. In this article, the following aspects are involved. First, the physical model of high-voltage nsPEFs and its bioelectrical effects on cellular organelles are introduced. Then, the existing researches of the interactions of high-voltage nsPEFs with cytoskeleton, mitochondria, endoplasmic reticulum, cell nucleus and other subcellular structure are reviewed and summarized; the relationship between the influence on cellular organelles by high-voltage nsPEFs and the biological effects such as cell death and intercellular communication is highlighted. Finally, the key technical challenges to high-voltage nsPEFs in biomedical research are condensed, followed by the prospects of future research directions.
Highlights
Literature research about the intracellular effects for cells exposured to nanosecond pulsed electric fields (nsPEFs)
溶酶体等[129]。溶酶体可以降解损伤的细胞膜和细胞器,参与细胞自噬过程。2014 年, Thompson 等人发现了溶酶体、钙离子和细胞骨架三者之间存在联系,研究发现在含钙离子的 培养基中生长的细胞在施加高阈值剂量的 nanosecond pulsed electric fields (nsPEFs) 后,MT 破坏,溶酶体迁移停止[42]。2018 年, Thompson 等人为了探究细胞内钙离子浓度是如何影响溶酶体运动,对中国仓鼠卵巢细胞 (CHO-K1)施加了 600 ns,16.2 kV/cm 的纳秒脉冲电场,研究发现在含钙离子的溶液中,施 加 nsPEFs 会破坏细胞骨架结构,从而阻止溶酶体运动[43]。作者分别拍摄了高钙离子浓度的溶 液和不含钙离子的溶液中溶酶体运动图像,发现溶酶体运动情况也受细胞内钙离子浓度影响。 高钙离子浓度的溶液中,细胞内溶酶体迁移停止,而在缺乏钙离子溶液中,一些溶酶体发生 移位。Kielbik 等人研究发现钙离子与细胞骨架破坏之间存在相关性,通过共聚焦显微镜观察, 钙离子浓度增加所引起细胞骨架破坏程度更加显著[130],这与 Thompson 等人的研究一致。由 于细胞骨架受到破坏,因此受细胞骨架牵引的溶酶体运动受到抑制。
Summary
(Electroporation, 简记为 EP)。毫秒级和微秒级的 PEFs 已经被广泛应用于污水处理[1, 2]、食品 Literature research about the intracellular effects for cells exposured to nsPEFs. 文章具体检索包括关键词及其组合的中英文,以及领域内重要研究者名单。中文平台搜 索关键词为:(nsPEF OR 纳秒脉冲电场 OR 超短脉冲电场 OR 陡脉冲电场 OR 亚微秒脉冲电场) AND(细胞器 OR 细胞内 OR 细胞骨架 OR 线粒体 OR 内质网 OR 囊泡 OR 液泡 OR 核膜 OR 细胞核 OR 溶酶体 OR DNA OR 钙离子 OR 蛋白质 );英文搜索关键词为:(nsPEF OR nanosecond OR ultrashort OR submicrosecond OR electrical pulse) AND (organelles OR intracellular OR cytoskeleton OR mitochondria OR endoplasmic reticulum OR vesicle OR vacuole OR nuclear OR lysosome OR nucleus OR DNA OR calcium OR proteins) OR nanoelectroporation OR supraelectroporation. 如上节所述,细胞膜、细胞核、细胞器等亚细胞结构有特定的介电性质,从而可以建立 细胞的等效电路模型以描述 nsPEFs 的细胞器生物电效应。除了基于充电时间常数的描述,米 彦等人基于等效电路和单细胞壳层介电模型仿真在频域分析细胞膜和核膜跨膜电位,得到细 胞的频率响应特性,发现当 PEFs 携带频率超过 1 MHz 的分量时即可影响细胞核膜[47]。
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.