Abstract
AbstractWhen crude oil prices began to escalate in the 1970s, conventional methods were the predominant methods used in forecasting oil pricing. These methods can no longer be used to tackle the nonlinear, chaotic, non-stationary, volatile, and complex nature of crude oil prices, because of the methods’ linearity. To address the methodological limitations, computational intelligence techniques and more recently, hybrid intelligent systems have been deployed. In this paper, we present an extensive review of the existing research that has been conducted on applications of computational intelligence algorithms to crude oil price forecasting. Analysis and synthesis of published research in this domain, limitations and strengths of existing studies are provided. This paper finds that conventional methods are still relevant in the domain of crude oil price forecasting and the integration of wavelet analysis and computational intelligence techniques is attracting unprecedented interest from scholars in the domai...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.