Abstract

The advent of three-dimensional (3D) Bioprinting increased the need for a suitable bioink in which Cells can live, proliferate and generate specific tissue and organ. Therefore, bioinks must have several physical and chemical characteristics that depend on the bioprinting modality and the target tissue. Alginate is considered a promising biomaterial for bioprinting due to its distinct physicochemical properties and diverse biological functions. However, some characteristics, such as cell adherence and biodegradability, are lacking, which can compensate when combined with other biomaterials, for example, gelatin, gelatin methacryloyl (GelMa), cellulose, silk fibroin, and hyaluronic acid. The alginate-gelatin blend receives considerable attention since gelatin has Arginine, Glycine, and Aspartate, the tripeptide Arg-Gly-Asp (RGD) sequence that could sustain cell attachment. Some parameters assist the optimization of bioink features like temperature, biomaterials' concentration, and crosslinking time. For instance, the viscosity of alginate increases by enhancing its concentration, and while it exhibits shear thinning property, it will be printed correctly. This review interprets the alginate-based bioink, focusing on its composite with other natural biomaterials, especially gelatin. Also, it discusses the parameters that affect bioink functionality and cell viability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call