Abstract

Additive Manufacturing technology has a significant impact on the modern world because of its ability to fabricate highly complex computerized geometrics. Pure 3D-printed polymer parts have limited potential applications due to inherently inferior mechanical and anisotropic properties. For more utilization and versatility, the addition of fillers has enhanced their functionalities. 3D printing has innovative advantages including low cost, minimal wastage, customized geometry, and ease of material change. This review reveals the development of 3D printing techniques of matrix composite materials with improving properties and their applications in the fields of aerospace, automotive, biomedical, and electronics. A general introduction is given on AM techniques mainly fused deposition modeling (FDM), Powder-liquid 3D printing (PLP), selective laser sintering (SLS), stereolithography (SLA), digital light processing (DLP), and robocasting. Process methodologies and behavior of different filler additives, reinforcement fibers, nanoparticles, and ceramic polymer composites are discussed. Also, some major issues of difficulty including printing parameters, homogeneous desperation of fillers, nozzle clogging due to filler aggregation, void formation, augmented curing time, and anisotropic attributes are addressed. In the end, some capabilities and shortcomings are pointed out for further development of 3D-printing technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.