Abstract
Unmanned aerial vehicles (UAVs) have drawn increased research interest in recent years, leading to a vast number of applications, such as, terrain exploration, disaster assistance and industrial inspection. Unlike UAV navigation in outdoor environments that rely on GPS (Global Positioning System) for localization, indoor navigation cannot rely on GPS due to the poor quality or lack of signal. Although some reviewing papers particularly summarized indoor navigation strategies (e.g., Visual-based Navigation) or their specific sub-components (e.g., localization and path planning) in detail, there still lacks a comprehensive survey for the complete navigation strategies that cover different technologies. This paper proposes a taxonomy which firstly classifies the navigation strategies into Mapless and Map-based ones based on map usage and then, respectively categorizes the Mapless navigation into Integrated, Direct and Indirect approaches via common characteristics. The Map-based navigation is then split into Known Map/Spaces and Map-building via prior knowledge. In order to analyze these navigation strategies, this paper uses three evaluation metrics (Path Length, Deviation Rate and Exploration Efficiency) according to the common purposes of navigation to show how well they can perform. Furthermore, three representative strategies were selected and 120 flying experiments conducted in two reality-like simulated indoor environments to show their performances against the evaluation metrics proposed in this paper, i.e., the ratio of Successful Flight, the Mean time of Successful Flight, the Mean Length of Successful Flight, the Mean time of Flight, and the Mean Length of Flight. In comparison to the CNN-based Supervised Learning (directly maps visual observations to UAV controls) and the Frontier-based navigation (necessitates continuous global map generation), the experiments show that the CNN-based Distance Estimation for navigation trades off the ratio of Successful Flight and the required time and path length. Moreover, this paper identifies the current challenges and opportunities which will drive UAV navigation research in GPS-denied environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.