Abstract

In ultra-precision machining of ferrous materials, diamond tools are easy to graphitize due to chemical reactions with ferrous materials, which can cause severe tool wear. The sharpness of the original cutting edge therefore cannot be maintained to machine mirror-level surface roughness. It cannot through a high-efficiency and low-cost way to obtain the workpiece surface integrity with high quality. Studying the wear mechanism of diamond tools and wear suppression methods is very important to improve the cutting efficiency of ultra-precision machining. In the present research, wear mechanisms and suppression schemes in diamond tools turning ferrous materials are reviewed and focusing on three major wear mechanisms and four effective suppression methods. In the end, this paper discusses the magnetism property of diamond-turnable materials, and introduces the feasibility of the magnetic field-assisted scheme to suppress diamond tool wear (DTW).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call